Plasmonic IQ modulators with attojoule per bit electrical energy consumption

Heni, Wolfgang, et al. “Plasmonic IQ modulators with attojoule per bit electrical energy consumption.” Nature communications 10.1 (2019): 1-8.


Coherent optical communications provides the largest data transmission capacity with the highest spectral efficiency and therefore has a remarkable potential to satisfy today’s ever-growing bandwidth demands. It relies on so-called in-phase/quadrature (IQ) electro-optic modulators that encode information on both the amplitude and the phase of light. Ideally, such IQ modulators should offer energy-efficient operation and a most compact footprint, which would allow high-density integration and high spatial parallelism. Here, we present compact IQ modulators with an active section occupying a footprint of 4 × 25 µm × 3 µm, fabricated on the silicon platform and operated with sub-1-V driving electronics.

The devices exhibit low electrical energy consumptions of only 0.07 fJ bit−1 at 50 Gbit s−1, 0.3 fJ bit−1 at 200 Gbit s−1, and 2 fJ bit−1 at 400 Gbit s−1. Such IQ modulators may pave the way for application of IQ modulators in long-haul and short-haul communications alike.

We listen

Polariton Technologies AG
c/o ETH Zürich
Postfach 9000
8803 Rüschlikon


We are revolutionizing our future communication network and contributing to the world through research, scientific accuracy and our very own set of values that we do not compromise.

Sneak Peek

Your subscription could not be saved. Please try again.
Please confim your email in your inbox

We use Sendinblue as our marketing platform. By Clicking below to submit this form, you acknowledge that the information you provided will be transferred to Sendinblue for processing in accordance with their terms of use