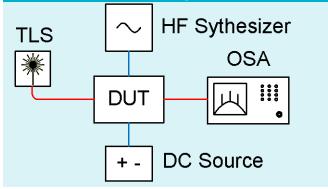
POLARITON

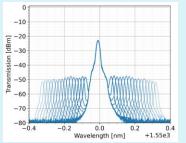
How to Measure V_{π} at High Frequencies

Description


The voltage V_{π} needed for a phase shift of π is an important figure of merit for the performance of an optical modulator. One method to measure V_{π} is by analyzing the optical spectrum of the modulated. This way, one can determine V_{π} from low to high frequencies characterizing a modulator's bandwidth and modulation speed.

DUT:

HF:


OSA: TLS:

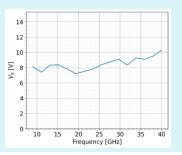
Schematic Setup

Working Principle

Modulation of the optical carrier leads to a transfer of energy from the carrier to sidebands. The modulation can be calculated as the power ratio between carrier and sideband.

From this, one can calculate the modulation index or phase modulation amplitude η . One can then calculate V_{π} for a PPM, respectively a MZM as follows:

$$V_{\pi} = rac{V_{\mathrm{D}}}{\eta} \pi, \qquad V_{\pi} = rac{V_{\mathrm{D}}}{2\eta} \pi$$


Device Under Test

Tunable Laser Source

Optical Spectrum Analyzer

High Frequency

An ideal MZM in push-pull mode only needs half the voltage for a shift of π . Furthermore, MZM must be driven at its 3 dB point which is done by applying a constant bias voltage for a balanced MZM or by shifting the wavelength for an imbalanced MZM.

References

W. Heni et al., "Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design," Opt. Express, 2017, doi: 10.1364/OE.25.002627.

H. Zwickel, "Optical Frequency Comb Generation with Silicon-Organic Hybrid Modulators", Karlsruhe Institute of Technology, 2015

To cite:

Polariton Technologies AG, MZM Parameter Testing: How to Measure V_{π} Employing Optical Spectrum Analysis [leaflet], Version POL-000160TSTPRC_revA_One-side-Vpi-HF